Controlling and regulating the nitriding potential under low pressure

- The K_N provides information on the quantity of nitriding potential available in the furnace atmosphere at all times. This increasing need for a reliable monitoring of the K_N comes from the requirements of the aerospace sector. In addition to its historic ALLNIT® process, BMI completed its offer with a monitoring and regulating probe.

- Used in various applications

 - Aeronautics
 - Aerospace
 - Automotive
 - Tooling
 - Heat treatment workshops

- **Working principle**
 - The K_N is calculated by measuring the hydrogen level present in the furnace, formed by the ammonia cracking reaction.
 - This K_N value is the quotient of the partial pressures of the ammonia and of the hydrogen.
 \[K_N = \frac{p(NH_3)}{p(H_2)} \]
 - The higher the K_N value, the higher is the nitriding power.
 - The higher the nitriding potential, the more likely the atmosphere will release nitrogen elements, allowing the nitriding to be done on the parts.
B.M.I. offers standard and custom-made solutions, adapted to each customer’s needs and complying to their industry’s standards.

Benefits of using the K_N probe under low pressure (300 mbar to atm.)

- Working under low pressure facilitates the increase of K_N values at the beginning of the cycle, compared to an atmosphere nitriding process
- Optimized gas consumption
- Cycle parameters can be defined regardless of the quantity of parts loaded into the furnace
- Reproducibility of results
- Continuous traceability of the furnace atmosphere
- Control of the white layers’ growth

The B5_RN range

- Standard sizes or specific chamber design
- Working temperature under nitriding: from 450°C to 650°C
- K_N probe available as an option on our range of B5_RN furnaces
- Fast and monitored cooling at 1200 mbar
- Working under low pressure from 300 mbar to the atmospheric pressure
- Retrofit available on low pressure nitriding furnaces, type B5_RN

<table>
<thead>
<tr>
<th></th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Depth (mm)</th>
<th>Load (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B53RN</td>
<td>450</td>
<td>450</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>B54RN</td>
<td>600</td>
<td>600</td>
<td>900</td>
<td>600</td>
</tr>
<tr>
<td>B55RN</td>
<td>900</td>
<td>700</td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>B56RN</td>
<td>1000</td>
<td>1000</td>
<td>1500</td>
<td>1500</td>
</tr>
</tbody>
</table>

Other technical specifications on request.

Fours Industriels B.M.I.
65, rue du Ruisseau
BP 736
38297 Saint-Quentin-Fallavier
FRANCE

Tel.: +33 (0)4 74 94 34 44
Fax: +33 (0)4 74 94 10 06
infos@tenova.com
www.bmi-fours.com
www.tenova.com